If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2=252
We move all terms to the left:
4p^2-(252)=0
a = 4; b = 0; c = -252;
Δ = b2-4ac
Δ = 02-4·4·(-252)
Δ = 4032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4032}=\sqrt{576*7}=\sqrt{576}*\sqrt{7}=24\sqrt{7}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{7}}{2*4}=\frac{0-24\sqrt{7}}{8} =-\frac{24\sqrt{7}}{8} =-3\sqrt{7} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{7}}{2*4}=\frac{0+24\sqrt{7}}{8} =\frac{24\sqrt{7}}{8} =3\sqrt{7} $
| q+19=980 | | n/17=23 | | 981=t+97 | | 36=m-6 | | s+27=93 | | s=36+32 | | ×+3y=-15 | | 1/3x+1/2x=x-3 | | m+72=83 | | x^2+10x+25.25=0 | | 0=-27y+51 | | x=4x–2-10 | | 0x=-27x+51 | | (0.25)^(x+1)=16 | | 5x/x+7=0 | | 10x-15-9x+21=5 | | 10x-15-9x-21=5 | | 2x(x+5)=(3x+3) | | 5(2x+4)-4(2x-3)=68 | | 9f=1/2 | | (2x+1)+75=90 | | 0=-4x-24 | | 5n-2n=-20-n-4 | | 15(x-3)=3(2x-3) | | -132x+5=21 | | 0=x^2-15x-1 | | Y=1/6+2,3x | | -6x-13=16 | | 16x=15x+10 | | x2+2/7.4x2+27x+-24.9= | | 6+4m+9=45 | | 5=5x5-5 |